Aadkment FA

Model S371
DOS/InSpector
Programmer’s Interface

V10 185 User's Manual

CISE 937

Copyright 1995, Canberra Industries, Inc. All rights reserved.

This manual contains proprietary information; no part of it may be repro-
duced or used in any form or by any means - graphic, electronic, or me-
chanical, including photocopying, recording, or information storage and -
retrieval systems — without the written permission of Canberra Industries.

Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06450
Tel: (203) 238-2351 Telex: 643251 FAX: (203) 235-1347

The information in this manual describes the product as accurately as
possible, but is subject to change without notice.

Printed in the United States of America.

T.INTRODUCTIONcccvevunnn cececaceaccaacanan

Table of Contents

A R R R I I I R R T

T.1. Nomenclature And Torm Definitionscueeeeeeeeieeeesaseeeeneeeacnsecsssesenasoocecacsssssnssens

1.2. Prefixes and Data Typos . ..cccceeecncaccccsascccaccaans
T1.3. Hexadecimal NOtBON . v ¢ e v v eeeeaeeeeaeectaceassassocsoeoecseeoaacaeoeeocscescecessseesas

2. HARDWARE DESIGN OVERVIEW ...t vceccecsccscscsaccccans
2.1, COMMUNICAtION SOUP oo vvvveaocssasccassccasnooseocaaaasacancens

LR I T T T T

D I R I I T

2.2, D818 STOMAGO < o e e oo aveeoooacacoasososnceasssesossssasssacsasesesasesessesasconssssssssenosss

3. USERINTERFACETO AP ceecens cecesncaencen ceseaea
3.1.Command SUMIMAIY « .t cvtececaccacsossscssssacacssecsccacaas

R R R R A R I R R R R R R R R R)

3.2.BasiC COMUMANAS « .« v v enueeneaeeeeosuoaeesensassseeasecasecsacoasoasessosneesesaneosseeessnss

-3.2.1.
3.2.2.
3.23.
3.2.4.
3.2.5.

.3.2.6.
3.2.7.
3.2.8.

sAckStatus Command cecsccnsceas et et etcetecateecescenescecetstctcccncacnsennan
SACQUIreOff CommBNd et eieteeeeeeeoaceoosroceacanseaasescacasesoscessscocsssenes
SACQUIrEStArt CommAaNdcoveieeoocosocaaeosaaseoaaneeesenasasaccssaeenneness
6BaudSYNch Commandivetteeceasssoscsaaanescceacscsansescsocaacsccesassans cesecsceas
SClearAcqData CommAand esoeeeaseeraaceaceeesaesasacsceoassessseosonsenens
sGetADCParms Commeand ceseaaan .
8GetAMPParmsCommandccc00cea.e coeeascae
sGotHVStatus Command . . c.vceevececoenceans teseccsecccnssssnnaa

3.2.9. sGetPSStatusCommandccceeeeecccaannnnnn cesescosccean cescceas cecces cesescan ctecscasas
3.2.10. sGetPZStatus Commandoceeeecencecnaanas cecaae cesesesssssaaa ceccecccccsancaanan
3.2.11. sGetStabilizerParmsCommand cessas ceccassasas eeccsesstacncsnssssssanaae
3.2.12. slnitialize Command cesesesesnanna Tt etecceesasasccscecan cecsacacs ceescccasaa cesecsase
3.2.13. sloadSpectrumData Commandccccceeaaccann teceecteacttersetcs e st ecacsssacanann
3.2.14. $P0leZero CommaNd « v v veeeeeeeacancananaaenn e eaccectcccetseeces st e cstacacesteseseannnn
3.2.15. sReadDisplayData Commandccueeeieeeeeenccanaaens cesaccccnas ceccsssescasasscsscans
3.2.16. sReadMCAInfoCommandc.cceeeeernnennncacanaan cecascscancasae ceacscecccsssssas cees
3.2.17. sReadMCAParms Command esesssssas “secesccaaca cecsecan ceeseccssascsccsaa eesessaseas
3.2.18. sReadMCAStatus Commandcceceeeesenncecenoncsa cececscaa Ceecececasssaas veecsssscaane
3.2.19. sReadPSInfo Commandccceeeeereennnnnaan cesscsesseasscccanscca eseocccccacas cecsane
3.2.20. sReadROICommEandcveeeeeeeonacncoennaeaaaeanna e eiccecceccennetscaccstraccsoennnn
3.2.21. sReadSpectrumDataCommandccevveeuweunnn cecsasaacas cecececanns esccssassssssanscss
3.2.22. sResetStabilizer Command . .. v i v it ieeteeaeeeeeneseeeesaceseasessecanaeasnsesneeennennnn
3.2.23. sSetPowerMode CommMANAo aoeeaeeennaneeeeseesenenensecseeeaeeeeeesenannnanannnes
3.2.24, SSOtPWIMOAE iiiceieeeereaanaancnsoaeanenccaacnacns Geceseecctcccasrsssasscaannnnas
32,25, SO PWISOUICE & ittt iieieeseeeeeeenaaaasaseeseeeeassasesccssaeeesosanansnneennannans
3.2.26. sSetStandbyDelaycccuu0n... et eeeacteaacaeeaaaaas et ececatetaacacaeeaacannas
3.3. Other SUPPOrted COMMEBNAS « & .o v ittt e et eetaeeeeeanneeeeeeeeeeesesesceseessaesaseneessasesssnens
3.3.1. sACkHVStatus Commandot ieneteneaeaeensieenenseaeseecosecessaeecaaaacananeses
3.3.2. SACKMCASHatus CoOMMANG . oo eveecnnnenueneeooeeoecaacncenncees ceeecetacsssesceseasanans
3.3.4. SACQUIrEON CommMANA . .. uuiieiuoeeaeneeenaanaeeeseeaseasasssseaeeeeeeaeacaeaasaneanees
3.3.5. sReadRawSpectralDataCommandcc0cuuunan ceeesecan ttecscsscacsscncacsenanns teaccce
3.3.6. sSetAcquisitionDelay Commando i tieinnnnnnnnuneeeeeassceeneeoaacaocoacaccaccacaaasanns
3.3.7. sSetADCPamMS ComMMANG ... vveeeenneeeeneneeeseasecacsaaccanenss ceseas cecaccssas ceasoen
3.3.8. sSetAMPParms Commanduveeencennneennaoeesncocaanenn csecececessasecasssssecanans
3.3.9. SSetHVPAMMS Command . .. i iitteeeennaseeseeeooseeneoscanenosseessasseeaceasenneasens
3.3.10. sSetStabilizerParms Commandc00vveen.. Geesccecsacentectessscs st sacaccasasseaas
3.4. Data Structures G e et seeccsecacettsasacsansseessssanscas teescccsccssssaceatcstcsesansaacse
B B L LN Ceeceececttcsaceccaccaactsceccsatannens
3.4.2. Amplifier ... ittt ittt e et ceecscceacecsesatsacsecetstcsactetanann
3.43. Batterty cececccatecaasccreean ceceaane ceeaes ceecccacana ceaons ceccesescaaaaa
3.44. BaudRatoc00uuuun et eeeaaeasaaaeeseeaesaotaensscasaseaaccasanannana Ceeeeaan
3.4.5. Coarse GaIN ... ittt eteenreeonsncoesecasnncasans ceeccaacans ceesssseacasonan ceeesans
3.46. COMMPort @ e e e e et et acacee et acatcaacaaatcaataconcceateatesacaeeesee e ceecaaan
3.47. Control Modecuvveneenncnnnaanan ceesee ceececseceeaeesssseeasscetocasescscccnnns

3.4.8.
3.4.9.
3.4.10.
3.4.11.
3.4.12.

Control Structure
Display Data
Gain Range

..
...
..

L R Sy

N =t aa

BNNOALALWONN

9

9
1
11
12
12
13
14
15
16
16
18
18
19
19
19
20
20
20

inSpector Programming

3.4.13. Initialization Level « . .o .o i veeeeeeocorseacacacscaassssocssasacsesnssscsccsscacsssanccnnse ceee. 27
3.4.14. Input SoUrceccecaneas .
3.4.15. InSpectorccceccactacacoaannn cescavaan ceceesancs
3.4.16. MCA Parameters Ceesceccssasaascanaccaans ctescccateccteassecacanan “ecececseaseasa. 28
B3.4.17. MCASEAtUS .. ccveenececacccaacsccsnsnsncsnsss sevescscsccacscnsscanse
3.4.18. Operating ReGionccccicecccccccecccasas casecvanacs
3.4.19. PowerModeccccceesccacccsccccccans cesccas sesscaces
3.4.20. PowerSUupply ..ce.ccoecccescsccsacscscccatascssacacscssccascnn .

....... tsesscsscescescnccas 28
3.4.21. Stabilizero vevececiccrctsrrsccnsersncans teeccecotarsaccatteasaseetettstcasactsans .. 28
3.5. User Interface Example of AcquiringDatacccc00 teeettcectsettctescsatascessecseteracsacsaveane 29
4. CALLING INSPECTOR APICFUNCTIONS ...cc.eccccccccaccncsccseccatncaascncasannes < 1o
4.1. Calling Microsoft C Functions FromBASIC ceeeacaaoas teecesssactasacssarossasrancane vees. 30
4.1.1. Compiling Programs Written incceveccsen ceeecacccassaan ceecenee ceececssessssstasccacsa 32
4.1.2. Linking Programs Written in Visual BASIC forDOS PEPN ceccae cescetvecstscsscascacasaana 32

4.1.3. Linking Programs Written in Visual BASIC for Windows it eeccececccccasoan Ceeeateaaan .. 32
4.2. CallingCFunctions FromCt teeacstccaacaasans ‘e
4.2.1. Compiling Microsoft C Functions forDOS00t .
4.2.2. Linking Microsoft C Programs forDOS ceeceecccecseaccesacnaas cveeccrcccsaas ceseae 33
4.2.3. Compiling C Functions for Windows
4.2.4. Linking C Programs for Windowscceecrecccncaccanan

A. COMMUNICATION eesecasccseoeans
A.1. Serial Communication Parameters teesecsaceascessacstcstsnassseceaan tececateancnnana 34

B.APIERROR CODES 4 i v vueeveccecsacsnscssssesasossccssssnsscsascssscscs et eecsanaans cecaseacena eeess 35
B.1. MCA Error Codes
B.2. Other Error Codes

C. POWER SUPPLY ERROR CODES ..

D.PROGRAMO CONTENTS ... ccecvreeeeaoaneaacaasasecnsessssosssssassscsaoscssacsaseses ceeceeacactasaas 36

Interface User’'s Manual

1. INTRODUCTION

This document for the Model S317 Inspector Programming Interface describes all functions of the InSpector’s Applications Program
interface (AP1). All input and output interfaces of each module are provided in enough detail to allow programmers to code software
for controlling the InSpector from a DOS or a Windows environment.

The C functions in the InSpector API software may be called from the Microsoft Assembly Language as well as from a number of
high-level languages, including C, C+ + and BASIC. The static DOS library included in the Model S371 package can be used only with
Microsoft compilers such as: ’
Microsoft Visual Basic for DOS, V1.0
Microsoft C/C+ +, V7.0
Microsoft Visual C, V1.0, V1.6
The dynamic link fibrary (DLL) can be used with any compiler capable of calling a fuﬁction in a DLL written for Windows 3.1.
1.1. Nomenclature And Term Definitions
Standard C language programming conventions have been used throughout this document.

1.2. Prefixes and Data Types

The notation used in this document uses prefixes on symbol names to help the programmer determine data types and avoid errors
before they reach the comgiler.

Prefix Definition Data type Quantity
b BYTE unsigned char 8 bits

s SHORT short or int 16 bits

i int 16 bits
us USHORT unsigned short 16 bits

! LONG fong 32 bits
ul ULONG unsigned long 32 bits
[4 REAL float 32 bits in {EEE FLOAT format
[pointer

en enumerative 16 bits
st structure variable

1.3. Hexadecimal Notation

Descriptions of hexadecimal data items use the notation ‘xxh’, where ‘xx’ is the hexidecimal value.

2. HARDWARE DESIGN OVERVIEW
2.1. Communication Setup

Communication to and from the MCA board is via RS-232 at 1200, 9600, 19200, 38400, $7600, and 115200 baud, using 8 data
bits, even parity, 1 stop bit. The MCA board will automatically adjust to the proper baud rate upon detecting serial data from the host.
No hardware or software handshaking is used during communication.

C?mmunication setup is initiated by the user application by using the InSpector API function sBaudSynch. The function is supplied
with the proper baud rate.

InSpector Programming

2.2. Data Storage

Data acquired by the data acquisition hardware or downloaded into the MCA board via the sLoadSpectrumData command will be
stored in channels O through 8191. During data acquisition channels O and 1 will hold elapsed live and true time respectively in 0.01
second resolution. Channels 2 through 8191 will hold spectral data. Each channel has 32 bits of storage capacity, or 4,294,967,295
counts. For the time channels this translates to approximately 11,930 hours. It is the tesponsibility of the user application to account

for this information.

3. USER INTERFACE TO API

3.1. Command Summary

All functions will return with an integer code. This return code represerits the status of the MCA, communication interface problems
to the MCA, or parameter values that are out of range. A function that completes successfully will return with a value of O unless

otherwise stated in the detailed description of the command.

Basic Commands

Command Description Page
sAckStatus Resets status flags (High Voltage, MCA, and Power-Supply) 3
sAcquireOff Turns acquisition hardware off 4
sAcquireStart Starts acquisition hardware, sets all hardware parameters 4
sBaudSynch Establish operating communication rate ' 6
sClearAcqData Clear acquisition data and/or time 7
sGetADCParms Retrisve ADC parameters 7
sGetAMPParms Retrieve Amplifier Parameters 8
sGetHVStatus Retrieve High Voltage status 9
sGetPSStatus Retrieve Power Supply status 9
sGetPZStatus - Retrieve Pole-Zero status 1
sGetStabilizerParms Retrieve Stabilizer Parameters 11
slnitialize Initialize MCA main program 12
sloadSpectrumData Load spectral data into MCA acquisition memory 12
sPoleZero Performs automatic amplifier pole/zero adjustment 13
sReadDisplayData Read compressed acquisition data for display or plotting 14
sReadMCAInfo Reads MCA firmware version, Model, and Serial Number 15
sReadMCAParms Reads current MCA acquisition parameters 15
sReadMCAStatus Reads MCA and LVPS status 16
sReadPSinfo Reads PS firmware version, Model, and Serial Number 18
sReadRO! Read ROl Totals 18
sReadSpectrumData Read spectral data from MCA board in compressed form 19
sResetStabilizer Reset overrange status on stabilizer 19
sSetPowerMode Sets LVPS parameters 19
sSetPwrMode Sets only the power mode of the LVPS 20
sSetPwrSource Sets only the power source for.the LVPS 20
sSetStandbyDelay Sets only the standby delay for the LVPS 20
Other Supported Commands

Command Description Page
sAckHVStatus Resets High Voltage status flags 21
sAckMCAStatus Resets MCA status flags 21
sAckPSStatus Resets Power-Supply status flags 21
sAcquireOn Turns acquisition hardware on 22
sReadRawSpectralData Read spectral data from MCA board in un-compressed form 23
sSetAcquisitionDelay Set acquisition start delay independent of the sAcquireON command 23
sSetADCParms Set ADC paramaeters 23

Interface User’s Manual

sSetAMPParms Set Amyplifier parameters 24
sSetHVParms Set High Voltage status 25
sSetStabilizerParms Set Stabilizer Parameters 25

3.2. Basic Commands

3.2.1. sAckStatus Command

short _ far __pascal sAckStatus (InSpector_T * pst, SHORT s)

Resets status and alert flag bits in the MCASTATUS response. Other bits of other responses may be affected as noted. The
power supply error code can also be cleared through this command.

pst - Pointer to an InSpector against which to apply the command.

s - Bitmap of which conditions in MCASTATUS to clear.

sResetPresetReached (000 1h)

sResetParminit (0002h)

sResetAcquisitionDetay (0004h)

sResetRAMBatteryLow (0008h)

sResetStabilizerOver (0010h)

sResetPowerlLost (0020h)

sResetHVStatus (0040h)

sResetBatteriesWarning (0100h)

sResetPS Alert (0200h)

Resets the sPresetReached status flag in the MCASTATUS which indicates that
the MCA has reached its preset time. Will not clear data or time.

Resets the sMCAParmlnit alert flag in the MCASTATUS which indicates that the
MCA board has been re-initialized back to default values.

Resets sAcquisitionDelay status flag in MCASTATUS which indicates that the
start of acquisition has been delayed. This command should not be used to
terminate delayed acquisition. Use sAcquireOff command instead.

Resets sRAMBatLow alert flag in MCASTATUS which indicates that the Lithium
battery for the ADC memory is low and the ADC memory is in danger of losing
data.

Resets the sStabilizerOverrange alert flag in MCASTATUS

Resets the sPowerlost alert flag in MCASTATUS which indicates that power to
the ADC/AMP hardware was temporarily interrupted during acquisition.

Resets the High Voltage Power Supply and updates the associated
FAULT/INHIBIT status indications from the MCASTATUS response. Also clears
the last power-supply error code. Refer to sGetHVStatus and MCASTATUS
response to indicate which bits are affected by this command.

Resets sBatinWarnAlert alert flag in MCASTATUS which indicates that the power
supply batteries are both in the WARNING region. Refer to sGetPSStatus to
indicate which bits are affected. The Quad-Enable Fault bit in the sGetPSStatus
command will be reset.

Resets sLVAlert alert flag in MCASTATUS which indicates that the low voltage

power supply (LVPS) has encountered any of the following conditions:

8} Power source switch from battery A to B or from B to A occured.

b} Interruption in ac power occurred.

c) Both source batteries are in WARNING region; sBatinWarnAlert alert
flag in MCASTATUS will also be set.

InSpector Programming

Use sGetPSStatus command to determine the actual cause, present
operating battery, and battery-operating region. Refer to sGetPSStatus to
indicate which bits are affected by this command. The Quad-Enable Fault bit
in the sGetPSStatus command will be reset. '
sResetPSCommeError (0400h) Reset sPSCommError alert flag in MCASTATUS, indicating that an error occurred
during communication with the power supply. Use sGetPSStatus command to
retrieve the last error code that may have triggered the alert. Refer to Appendix C
for description of error codes. Refer to sGetPSStatus to indicate which bits are
affected. The Quad-Enable Fault bit in the sGetPSStatus command will be reset.

The bitmap in s consists of the bitwise OR of the bits described. Bits other than the ones described will have no effact.

3.2.2. sAcquireOff Command
short __far __pascal sAcquireOff (InSpector_T * pst)
Turns acquisition logic OFF if presently ON.
pst - Pointer to an InSpector against which to apply the command.

This command will return an error if issued when acquisition is already off.

3.2.3. sAcquireStart Command

short __ far _ pascal sAcquireStart { InSpector T * pst,
SHORT s,
LONG (Delay,
ULONG) ulPresetTime,
ULONG ulliveTime,
ULONG ulTrueTime)

Loads the amplifier, ADC, and stabilizer electronics with the parameters in the InSpector data structure. Turns on the high
voltage power supply. Enables the data acquisition logic.

pst - Pointer to an InSpector against which to apply the command. Parameter data for the InSpector components must
be completed before issuing the command. The fields that need to be set are:

- stADC
eﬁGainRange - Can be either:

oenGain256 (00)
enGain512 (01)
enGainlk {02)
enGain2k {03)
enGaindk (04)
enGain8k {0S)

fLLD . - LLD, value can be between 0.1 and 110.0
fULD - ULD, value can be between 0.0 and 110.0
rZero - ZERO, value can be between -5.0 and 5.0

Interface User’s Manual

enlnput

- stAMP

enCoarseGain

rFineGain
rSuperfFineGain
sPoleZero

- stHV

- tnput source. Value can be:
enintinputSource (01)

enExtlnputSource (02)
enTestinputSource (03)

- Bitmap that includes the flags:

sFastShaping (04h) - éhaping is Fast. If not set, shaping is slow.

sNeglnhibitSignal (08h) - INHIBIT signal polarity is negative. If not set, signal polarity
is positive

sPUROnN (10h) - PUR is on. If not set, PUR is off.

sNegSignalPolarity (40h) - Negative signal polarity. If not set, polarity is positive.
sTRPPreamp (80h) - TRP Preamp type. If not set, it is an RC type preamp.
The bitmap in ¢ consists of the bitwise OR of the bits described.

- Coarse gain. The value can be:

enX2 (20h) - Gain of 2
enX6_6 (22h) - Gain of 6.6
enX10 (O0h) - Gain of 10
enX33 (02h) - Gain of 33
enX120 (O1h) - Gain of 120

enX400 (03h) - Gain of 400
- Fine gain, value can be between 1.0 and 4.0
- Super Fine gain, value can be between 0.9800 and 1.0200

- Pole/zero Setting

- HVPS Status - bits encoded as follows:
sOn (O1h) - HV ON/OFF status

0 =OFF,

1=0N

Valid only if sinhibitChange is not set.
sHighRange (04h) - HV Range

O =low,

1=high
sinhibitChange (80h) - Inhibit change to high voltage state {ignore sOn)
The bitmap in s consists of the bitwise OR of the bits described.

- Actual high voltage setting, including polarity

3.2.4.

InSpector Programming

This DAC value will be retained by the MCA board and returned to the host as long as
the high voltage is OFF. When the high voltage is turned ON then the actual value read
from the HVPS will be returned instead.

- stStabilizer

stGain and stZero - Fields of each control structure are specified. The fields specified are:

sCentroid - Centroid location
sWindow - Width of window
sSpacing - Spacing of centroid
sCorrection - Correction

enContro.l - The control values can be:

enControlHold (00)
enControlOn (01)
enControlOff (02)
enControlLoad (03)
sRateDiv - Rate Divider, value canbe 1, 2, 4, or 8
s - Stabilizer Control, bits encoded as follows: °
sNalRange (O1h) - Stabilizer Gain Range
0 = £ 1% (for Ge detectors)
1 = + 10% (for Nal detectors)
1Delay ‘ - Delay to start in seconds. O = no delay
ulPresetTime - Preset Time in 0.01 second increments

ulLliveTime - Elapsed Live Time in 0.01 second increments

ulTrueTime - Elapsed True Time in 0.01 second increments

. If the sAcquireStart command is received while in PWrSAVE mode, the MCA will automatically switch the power mode to

PwrON, start the acquisition, and return to PwrSAVE when acquisition terminates. The Delay-to-start value determines how
long to delay the start of acquisition after the high voltage is stabilized. If the start of acquisition has been delayed, the
Acquisition-Delay flag in the MCASTATUS will be set. This command will return an error if issued when acquisition is
already on or the start of acquisition has been delayed.

Unlike the sAcquireON command this command performs a set of hardware commands that are necessary to prepare the
hardware for acquisition. The values in the InSpector structure must be filled in completely for the command to perform
propedy. Unexpected results may occur if the values of the structure are not completed.

sBaudSynch Command

short __ far _ pascal sBaudSynch (InSpector_T * pst, Baud_T en)

The purpose of this command is to establish communication between a COMM port on the PC and the InSpector. After the

COMM port is initialized, the hardware is sent a command repetitively to help it determine the operating baud rate. The MCA
is allowed to cycle through the available baud rates and respond when the full command has been received error-free.

Interface User’s Manual

Since hardware and software configurations can affect the computer’s communication speed, not all computer systems will be
capable of operating at each baud rate. The use of the Windows DLL may also decrease the available baud rates.

pst - Pointer to an InSpector against which to apply the command. The value of the serial communication port must be
completed.

en - The operating baud rate expressed as the divisor latch value to the UART. Its values can be:

81200 (60h)
B9600 (OCh)
819200 (06h)
838400 (03h)
857600 (02h)
8115200 (01h)

3.2.5. sClearAcqData Command

short __far __pascal sClearAcqData (InSpector T * pst,
SHORT s,
SHORT sFirst,
SHORT slength)

Clears data and/or timers on MCA board

pst - Pointer to an InSpector against which to apply the command.
s - Bitmap used to clear time and/or data

sClearTime (40h) - Clears Time

sClearData (80h} - Clears Data

The bitmap in s consists of the bitwise OR of the bits described. Bits other than the ones described will have

no effect.
sFirst - First channel to clear
sLength - Number of channels to clear.

Length must be 1 or greater, and sum of start plus length must not exceed 8192.

3.2.6. sGetADCParms Command

short __far __pascal sGetADCParms (InSpector_T * pst, ADC_T * pstADC)

Reads ADC parameters from the MCA board.

pst - Pointer to an InSpector against which to apply the command.
pstADC - Pointer to an ADC structure in which the parameter data is put. The fields that are affected are:
enGainRange - Will be one of the following:

enGain256 (00)
enGain512 (01)
enGainlk (02)

inSpector Programmina

enGain2k (03) ~
enGaindk (04))
enGain8k (05)

LD - LLD, value will be between 0.1 and 110.0

ULD - ULD, value will be between 0.0 and 110.0

tZero - ZERO, value will be between -5.0 and 5.0

eninput - Input source. Value can be:

enintinputSource (01)
enExtinputSource (02)
enTestinputSource (03)

3.2.7. sGetAMPParms Command

short _far __pascal sGetAMPParms (InSpector_T ¢ pst, AMP_T * pstAMP)

Reads amplifier parameters from the MCA board.

pst , - Pointer to an InSpector against which to apply the commanq.
pstAMP - Pointer to an AMP structure in which the parameter data is put. The fields that are affected are:
‘s - Bitmap that includes the flags: ‘
sFastShaping (04h) - Shapi;\g is Fast. If not set, shaping is slow.
sNeglnhibitSignal (08h) - INHIBIT signal polarity is negative. If not set, signal polarity is positive.
sPUROR (10h) - PUR is on. If not set, PUR is off,
sNegSignalPolarity (40h) - Negative signal polarity. If not set, polarity is positive.
sTRPPreamp (80h) - TRP Preamp type. If not set, it is an RC preamp type.

The bitmap in s consists of the bitwise OR of the bits described.
enCoarseGain - Coarse gain. The value can be:

enX2 (20h) - Gain of 2
enX6_6 (22h) - Gain of 6.6
enX10 (OOh) - Gain of 10
enX33 (02h) - Gain of 33
enX120 (0O1h) - Gain of 120
enX400 (03h} - Gain of 400

rFineGain - Fine gain, value can be between 1.0 and 4.0
rSuperFineGain - Super Fine gain, value can be between 0.9800 and 1.0200
sPoleZero - Pole/zero Setting

Interface User’'s Manual

3.2.8.

3.2.9.

rShapingConst - Shaping constant code. The value is in microseconds. If the value is negative, then the
constant cannat be determined by the InSpector APl. Negative values can be:

rShapeOther 1 (-1) - First user-specific hardware shaping constant.
rShapeOther 2 (-2) - Second user-specific hardware shaping constant.
sGetHVStatus Command
short __far __pascal sGetHVStatus (InSpector_T * pst, HV_T * pstHV)

Reads High Voltage Power Supply status, DAC value, polarity, range, and other status information from high voltage
hardware

pst) - Pointer to an InSpector against which to apply the command.
pstHV - Pointer to a HV structure in which the parameter data is put. The fields that are affected are:

s - HVPS Status - bits encoded as follows:

sOn (O1h) - HV ON/OFF status

0 = OFF

1= ON

HV Status is OFF whenever the HVPS is in the FAULT or INHIBIT state
sHighRange (04h) - HV Range

0 =low,

1 =high
sLogicArmed (10h) - High voltage logic is ARMED if set. See MCASTATUS response.
sRamping (20h) - HV Ramping if set
sinhibited (40h) - HV Inhibited if set
sFault (80h) - HV Fault if set

NOTE: sinhibited and sFault are reset by the sAckHVStatus command, by the sAckStatus command (if
sResetHVStatus sot) and by the condition clearing. sRamping is reset by the condition clearing.

The bitmap in & consists of the bitwise OR of the bits described.

r - Actual high voltage reading, includes polarity
Note that r returns the actual voltage, not the voltage setting. The reading and setting should be equal if the high voltage is
ON and not ramping. Ramping status is returned by the MCASTATUS responsa. When the high voltage power supply is OFF,
the returned value is the same as that written with the sSetHVParms or sAcquireStart command. When the high voltage
‘power supply is ON, the returned value will be the actual value read from the high voltage power supply.
sGetPSStatus Command
short _ far _ pascal sGetPSStatus (InSpector_T * pst, PS_T * pstPS)
Reads Power status and other power-supply related status information from MCA and Power-Supply boards.

pst - Pointer to an InSpector against which to apply the command.

pstPS - Pointer to a PS structure in which the parameter data is put. The fields that are affected are:.’

10

sSysStatus

enMode

sPSStatus

. stBatA and stBatB

InSpector Programming

- Power Supply system status - bits encoded as follows:

sSwitched (01h)

sinterrupt (O2h)

sWarning {O4h)

sCommeError (10h)

sQuadEnableFault (20h)

- Power source switch occurred from battery A to B
or B to A. This bit is reset by having the
sResetPSAlert flag set in either the sAckPSStatus or
sAckStatus command.

- Interruption in ac power occurred. This bit is reset
by having the sResetPSAlert flag set in either the
sAckPSStatus or sAckStatus command.

- Both source batteries are in the WARNING region.
This bit is reset by having the
sResetBatteriesWarning flag set in either the
sAckStatus or sAckPSStatus command or by the
condition ceasing to exist.

- PS Communication error. sErrCode contains error
code. This bit is reset by having the
sResetPSCommError flag set in either the
sAckStatus or sAckPSStatus command.

- Reset by issuing a sAckPSStatus command with or
without acknowledge bits. Can also be cleared by
issuing an sAckStatus command with
sResetPSCommError, sResetBatteriesWarning, or
sResetPSAlert set.

The bitmap in sSysStatus consists of the bitwise OR of the bits described.

- Power mode of operation. The value can be:

enPweSTDBY (01)
enPwrSAVE (02)
enPwrON (03)

- Supply is in standby mode
- Supply is in power save mode
- Supply is in power on

- Power Status - bits encoded as follows:

sBatBSupplyPower (04h)

sUseBatAFirst (10h)

sACAvailable (80h)

- Power Source
O = Battery A or ac power
1= Battery B

- Power Source Mode
0= Use the battery with the lowest charge first
1 = Use Battery A or ac power first

- AC Power Available
0= AC power is not available
1= AC power is available and is connected to
battery port A

- Fields of each battery structure are affected. The fields affected are:

enOpRegion - Operating region, values can be:

enDischarged (00)
enStandby (01)

" Interface User's Manual

enBatterylLow (02)
enBatteryGood (03)

rVoltage - voltage, maximum value is 6.8V
sErcCode - Last Power-Supply Error code. Valid only when sCommeError is set. Can be reset
through sAckStatus or sAckPSStatus command. Refer to Appendix C for error code
description.
sDelay - Standby Delay preset value in minutes

The Standby Delay value specified through the sSetPowerMode command indicates how long the MCA board will wait
before switching the power supply to PwrSTDBY mode. The switch will be made only if the MCA board is not acquiring
AND the communication between MCA and host computer stops. The elapsed delay will be reset when communication
resumes. To resume communication properly, use the sBaudSynch command.

3.2.10. sGetPZStatus Command
short __ far __pascal sGetPZStatus(InSpector_T * pst)
Reads pole/zero result.
pst - Pointer to an InSpector against which to apply the command.

. The function returns with the pole/zero result. The value can be:

sNotPerformed (OOh) - Automatic pole/zero not performed
sSuccess (01h) - Automatic pole/zero completed successfully
sPZTimeOut (FFh) - Automatic pole/zero timed out error (not successful)

Any other value would be an InSpector APl error code.

3.2.11. sGetStabilizerParms Command
short _far __pascal sGetStabilizerParms (InSpector_T * pst, Stabilizer_T * pstStab)
Reads Stabilizer parameters from the MCA board.
pst - Pointer to an InSpector against which to apply the command.

pstStab - Pointer to a Stabilizer structure in which the parameter data is put. The fields that are affected are:

. stGain and stZero - Fields of each contro! structure are affected. The fields affected are:
sCentroid - Centroid location
sWindow - Width of window
sSpacing - Spacing of centroid
sCorraction - Correction
enControl - The control values can be:

enControlHold (00)

11

3.2.12.

3.2.13.

12

InSpector Programming

enControlOn (01)
enControlOff (02)
enControlLoad (03)
sRateDiv - Rate Divider, value canbe 1, 2, 4, or 8
s - Status bits, encoded as follows:
sOverRange - OVERRANGE if set. Reset by ResetStabilizer command.
s - Stabilizer Control, bits encoded as follows:
sNalRange (O1h) - Stabilizer Gain Range
0 = %+ 1% (for Ge detectors)
1 = £ 10% (for Nal detectors)

OVERRANGE condition is set if Correction exceeds range (value at 000h or FFFh). Mode will be set to HOLD when
OVERRANGE is set. OVERRANGE is reset by sResetStabilizer command.

sinitialize Command
short __far __pascal slnitialize { InSpector_T * pst, InitLevel_T en)

Forces MCA to re-initialize itself and reset data and variables as if power had been cycled. Actual level of initialization is
specified on invocation of command.

pst - Pointer to an InSpector against which to apply the command.
en - Initialization level. Value can be:

enlnitProgRAM (00) - Initialize program RAM only
enlnitAIRAM (01) - Initialize program RAM and data RAM (time and data)

This command will reset the MCA‘s communication parameters. The sBaudSynch command should follow this command to
properly re-establish the communication.

sLoadSpectrumData Command
short _ far __ pascal sLoadSpectrumData (InSpector T * pst,
SHORT sFirst,
SHORT slLength,
ULONG ulTrueTime,
ULONG ulliveTime,
ULONG * pul)

-

Writes raw spectral data into MCA board memory.

pst - Pointer to an InSpector against which to apply the command.
sFirst - Start channel

sLength - Length in channels

ulTrueTime - Spectrum Elapsed True Time in 0.01 second increments

Interface User's Manual

3.2.14.

ulliveTime - Spectrum Elapsed Live Time in 0.01 second increments
pul - Pointer to an array of raw data

Length must be 1 or greater, and sum of start plus length must not exceed 8192. Command will not be honored if
acquisition is on or start of acquisition has been delayed. In such a case, an error code is returned.

sPoleZero Command
short _far __pascal sPoleZero (InSpector T * pst,
SHORT slnitStep,
SHORT s,
SHORT sTimeout,
SHORT sLLD,
SHORT sULD)

Directs MCA board to perform automatic pole zero adjustment on amplifier circuitry.
pst - Pointer to an InSpector against which to apply the command.
sinitStep - Initial step size to use to increment or decrement the hardware DAC, expressed as 2" where n = O through
9 for 1 through 512. The initial value will be used until the hardware changes from overcompensation to
undercompensation, or vice-versa. Thereafter a step size of 1 will be used.
s - Control byte, bits encoded as follows
sResetPZAlgorithm (80h) - Reset current pole/zero algorithm pattern if set. Otherwise, continue using
existing pole/zero pattern
sWaitForCompletion (40h) - Command does not return until Pole Zero is complets. If not set, completion can
be checked using the sGetPZStatus command.
sTimeout - Timeout value in seconds. This value determines how long to wait in the pole/zero algorithm attempting to
perform pole/zero before resuming the normal program and servicing host commands. Valid range is

00 Use previously-established value in EEPROM

01-FEh Value to use, in seconds. This value will be permanently written
into EEPROM until (a) erased, or (b) new value is written.

FF Erase previously-established value and use default which is 25
seconds
sLLD - Temporary LLD value for the ADC to use during the pole zero algorithm, expressed as a percentage. Valid
range is) ’
00 Use previously-established value in EEPROM
01-6Eh Value to use, in percent, representing 1% to 110%. This value will

be permanently written into EEPROM until (a) erased, or (b) new
value is written.

FF Erase previously-established value and use dpfault which is 50
percent (32h).

13

3.2.15.

14

InSpector Programming

sULD - Temporary ULD value for the ADC to use during the pole zero algorithm, expressed as a percentage. Valid
range is)
00 Use previously-established value in EEPROM
01-6Eh Value to use, in percent, roprésenting 1% to 110%. This value will

be permanently written into EEPROM until (a) erased, or (b) new
value is written.

FF Erase previously-established value and use default which is 100
percent (64h). -

If sWaitForCompletion is set, the function returns with the Pole/Zero result. The value can be:

sNotPerformed (OOh) - Automatic pole/zero not performed
sSuccess (Oth) - Automatic pole/zero completed successfully
sPZTimeOut (FFh) - Automatic pole/zero timed out error (not successful)

Any other value would be an InSpector AP{ error code.
If sWaitForCompletion is not set, pole/zero status can be checked via sGetPZStatus command.

If the application does not wait for the pole/zero to complete, the MCA board will NOT service host commands while in the
pole zero algorithm. Commands sent will time out. The application can continuously poll the MCA board with a command,
i.e. sGetPZStatus, until a valid response is received.

The internal pole/zero algorithm’s pattern counters are reset:
(a) On system initialization following power on,
(b) On command (sResetPZAlgorithm) and
(c) Upon a successful pole/zero convergence.

sReadDisplayData Command

short __far __ pascal sReadDisplayData { InSpector_T * pst,
SHORT sFirst,
SHORT sLength,
SHORT sk,
SHORT s,
SHORT sV,
DspData T * pstDisplayData)

Returns spectral data from the MCA board scaled for display or plotting. Data scaling is based on the compression factor K,
vertical full scale V, and number of data channels.

pst - Pointer to an InSpector against which to apply the command.
sFirst . S.tart channel
sLength - Length in channels
sK - Compression Factor (K) in channels. Either 1,2,4, or 8 ~
s - Display Data control. Bits are encoded as follows:
sAutoscale (O1h) - Set autoscaling
slog (02h) - Set logarithmic scaling. Otherwise, it is linear.

interface User’s Manual

3.2.16.

sV - Vertical Full Scale (V), value is 2°s exponent. Valid values are:

For Linear:

6 (VFS =64)
7 (VFS =128)

8 (VFS = 256)

L
32 (VFS =4.3KM)
For Log:

18 (VFS =262K)
24 (VFS =16M)
32 (VFS =4.3KM)

pstDisplayData - Pointer to a structure to hold display data. The fields affected are:

s - Similar in structure to the s that is passed. It only sets sLog if appropriate.

sV - Similar in structure to the sV that is passed.

sl.ength - Number of compressed channels that is returned.

sRawData - The raw data from the command. Other bytes of raw data directly follow this field in

the structure. :
The buffer pointed to by pstDisplayData must be sufficiently large to include all the fields in DspData_T
plus the additional display data that follows sRawData. Note that sSpareZ and sFill are not necessarily
located at their respective positions in DspData_T. However, they are included so that space is allocated
for them when creating a buffer.
Length must be 1 or greater, and sum of start plus length must not exceed 8192. Time data in channels O and 1 of the

spectral data is excluded from the scaling.

sReadMCAInfo Command
short _far _pascal sReadMCAlnfo (InSpector_T * pst, Hard warelnfo_T * pstinformation)

Returns MCA firmware version, serial number, and model numbaer, if any. The Version level is retrieved from ROM. The
Model and Serial are retrieved from EEPROM.

pst - Pointer to an InSpector against which to apply the command.
pstinfo - Pointer to a hardware information structure in which the parameter data is put. The fields that are affected are:

Version - MCA firmware version

{Model - MCA Model
ulSerialNum - MCA Serial Number

15

3.2.17.

- 3.2.18.

16

InSpector Programming

sReadMCAParms Command
short __far __pascal sReadMCAParms (InSpector_T ® pst, MCAParms_T * pstParms)

Returns current MCA acquisition setup parameters (acquisition presets, start delay, etc.)

pst - Pointer to an InSpector against which to apply the command.
pstParms - Pointer to an MCA parameters structure in which the parameter data is put. The fields that are affected are:
s - Acquisition Preset Control.

sSetliveMode (O1h) - Preset mode is Live Time. If not set, the mode is true time.
sWaitAcquisition (02h) - Waiting for acquisition to start.
The bitmap in 8 consists of the bitwise OR of the bits described.
{Delay ‘ - Delay to start in seconds. 0 = no delay .
ulPresetTAme» - Preset Time in 0.01 second increments
ulLliveTime - Elapsed Live Time in 0.01 second increments
ulTrueTime - Elapsed True Time in 0.01 second increments
When sWaitAcquisition is set it indicates that Qn acquire start command has been received but the hardware is not ready.
The MCA board is presently waiting for the hardware to become ready. Meanwhile the elapsed delay since the acquire start
command was issued is reported in the elapsed true-time field.
sReadMCAStatus Command

short _ far __pascal sReadMCAStatus (InSpector_T * pst, MCAStatus_T * pstStatus)

Returns present MCA status

pst - Pointer to an InSpector against which to apply the command.
pstStatus - Pointer to an MCA Status structure in which the parameter data is put. The fields that are affected are:

sStatus - MCA Status, bits encoded as follows

sAcquisitionDelay (O1h) - Acquisition-Delay flag, indicating that the MCA board has
deferred the start of acquisition. Bit will reset itself when
.. acquisition starts or by any of the following commands:

a) sAcquireOFF command, or
b) sAckMCAStatus or sAckStatus command with
sResetAcquisitionDelay set

The elapsed delay time can be obtained through the
sReadMCAParms command.

sMCACollecting (02h) - MCA Collecting flag, indicating the MCA board’s data
acquisition circuitry has been enabled. This bit resets when
acquisition stops as result of having reached preset condition

Interface User’s Manual

sPresetReached (04h)

sHVRamping (08h)

or having been prematurely terminated via sAcquireOFF
command. '

- Preset-Reached flag, indicating that the MCA‘s data
acquisition had reached its destined preset time and the data
acquisition circuitry has been disabled. This bit is set by the
MCA board during acquisition when the elapsed time equals
or exceeds the preset time. The bit is reset by sAckStatus or
sAckMCAStatus command with sResetPresetReached set.

- High voltage RAMPING. This is an indication that the high
voltage has not yet reached its destined value. Bit will reset
itself when condition ceases to exist.)

sAlerts - Alert Flags. Based on which alert flag bit is set, the host may issue additional.
commands to find out more about the condition(s) and/or to reset the alerting status.
The encoding of the bits follows. The condition is true when the bit is set (bit = 1).

'sLVAlert (O1h)

sHVAlert (02h)

sMCAParminit (04h)

sPSCommeError (08h)

sRAMBatLow (10h}

- Low-Voltage-Power-Supply Alerting flag. Set by MCA
board as it monitors the Power-Supply and finds any of
these conditions true:

a) Power source switch has occurred from battery A
toBorBto A

" b) Interruption in AC power occurred
c) Both source batteries are in WARNING region
(sBatinWarnAlert will also be set to 1)

Reset by sAckStatus or sAckPSStatus command with
sResetPSAlert set

- High-Voltage-Power-Supply Alerting flag. Set by MCA
board as it monitors the high voltage power supply and
finds any of these conditions true:

a) High voltage output is INHIBITED
b) High voltage output is in FAULT state

Reset by sAckStatus or sAckHVStatus command or the
condition(s) clearing.

- MCA Parameter-initialization flag. Set by the MCA
board to indicate that the program has re-initialized back
to default values. Reset by sAckStatus or
sAckMCAStatus command with sResetParminit set.

- Power-Supply-Communication error flag. Set by the
MCA board to inform the host computer that an error
occurred during communication with the power supply.
Use sGetPSStatus command to retrieve the last error
code that may have set the flag. Refer to Appendix C for
description of codes. Reset by sAckStatus or
sAckPSStatus command with sResetPSCommeError set.

- BB-RAM Low-Battery flag. Set by MCA board to
indicate that the Lithium battery for the ADC memory
needs replacing. Acquired data is in danger of being lost.
Reset by sAckStatus or sAckMCAStatus command with

17

sStates

sDiagStatus

3.2.19. sReadPSInfo Command

sStabilizerOverrange (20h)

sBatinWarnAlert (40h)

sPowerlost (80h)

- States flag

sPwrSaveState (O1h)

sHVArmed (02h)

- Diagnostic Status

InSpector Programming

sResetRAMBatterylLow set or if the condition ceases to
exist.

- Stabilizer-Overrange alart flag indicates that the
stabilizer is in the OVERRANGE condition. Reset by
sAckStatus or sAckMCAStatus command with
sResetStabilizerOver sot.

- Batteries-in-Warning alert flag indicates that both
power-supply batteries are operating in the WARNING
region. Reset by sAckStatus or sAckPSStatus command
with sResetBatteriesWarning set or when the condition
ceases to exist. sLVAlert will also be set when this
condition exists.

- Power-Lost alert flag indicates that power to the ADC,
amplifier, and stabilizer electronics was lost during
acquisition. Reset by sAckStatus or sAckMCAStatus
command with sResetPowerlLost set.

- Switch-to-PwrSave flag. This indicates that the MCA
will automatically switch the power mode to PwrSAVE as
soon as acquisition terminates. Refer to sAcquireStart,
sAcquireOn and sSetPowerMode commands for
additional information.

- High voltage is in the ARMED state, indicating that the
voltage will ramp to the desired value when an
sAcquireOn command is received.

short __far __pascal sReadPSinfo { InSpector_T * pst, Hardwarelnfo_T * pstinfo }

Returns Power-Supply firmware version, serial number, and model number, if any. The Version level is retrieved from ROM.
The Model and Serial number are retrieved from EEPROM.

pst L Pointer to an InSpector against which to apply the command.
pstinfo - Pointer to a hardware information struéture in which the parameter data is put. The fields that are affected are:
) IVersion - PS firmware version
{Model - PS Model
ulSerialNum - PS Serial Number

3.2.20. sReadRO! Command

short __ far __pascal sReadROI (

18

InSpector T * pst,
SHORT sFirst,

Interface User’s Manual

3.2.21.

3.2.22.

3.2.23.

SHORT slLength,
ULONG * pul)
Returns RO total from MCA board
pst - Pointer to an InSpector against which to apply the command.
sFirst - Start channel
sLength - Length in channels
pul - pointer to a long integer to place the RO! total.

Length must be 1 or greater, and sum of start plus length must not exceed 8192.

sReadSpectrumData Command

short _ far __ pascal sReadSpectrumData (InSpector_T * pst,
SHORT sFirst,
SHORT slength,
ULONG * put)

Returns spectral data from MCA board.

pst - Pointer to an InSpector against which to apply the command.

sFirst - Start channel

slLength - Length in channels

put - pbinter to a buffer to place the spectral data

Length must be 1 or greater, and sum of start plus length must not exceed 8192.

sResetStabilizer Command

short __far _ pascal sResetStabilizer (InSpector_T * pst)

Resets OVERRANGE status on stabilizer circuitry and loads Correction DACs to default values. Also resets Stabilizer-

Overrange alert flag in MCASTATUS if set.

pst - Pointer to an InSpector against which to apply the command.
sSetPowerMode Command
-short _ far __pascal sSetPowerMode (fnSpector T * pst,
PowerMode_T enPowerMode,
SHORT s,
SHORT sDelay)

Instructs MCA to change the operating power supply mode.

pst - Pointer to an InSpector against which to apply the command.

19

InSpector Programming

enPowerMode - Power mode of operation (mX). The value can be:
enPwrOFF (00) - Set supply to off
enPwrSTDBY (01) - Set supply to standby made
enPwrSAVE (02) - Set supply to power save mode
enPwrON (03) - Set supply to power on
] - Control - bits encoded as follows:
sUseBatAFirst (10h) - Power Source Mode (sX)

0 = Use battery with lowest charge first
1= Use Battery A/AC first .

sinhibitPowerSource (20h) - Inhibit change to power source sX with this command
0 = allow change to sX
1= do not allow change to sX

sinhibitPowerMode (40h) - Inhibit change to power mode mX with this command
0 = allow change to mX
1= do not allow change to mX

sDelay - Delay to switch power mode to PwrSTDBY in minutes if system idling (no communication activity between

host and MCA). Value 0000 = inhibit automatic switch to PwrSTOBY if system is idling. Maximum time
allowed is 18 hours.

In OFF no power is applied to the electronics. Cycling the main power switch from OFF to ON switches the power supply to
PwrStdby mode. In PwrStdby mode, minimum electronics are ON. The electronics will monitor host communication and
upon detection will automatically switch the system to PwrSave mode in which only the power supply and MCA electronics
are ON. No power is applied to the data acquisition or high voltage electronics in PwrSave mode. In PwrOn mode, power is
applied to the MCA and data-acquisition electronics. The host computer must instruct the MCA to switch power modes from
PwrSave to PwrOn. High voltage electronics can only be enabled when the system is in PwrON mode.

While acquisition is ON and a command is received from the host computer to switch from PwrOn to PwrSave the command
will be carried out when acquisition terminates. The state of the Switch-to-PwrSave flag can be read back via MCASTATUS.

3.2.24. sSetPwrMode
short __far _ pascal sSetPwrMode (InSpector_T * pst, PowerMode_T enPowerMode)

This command performs only the power mode setting of the sSetPowerMode command. It calls the sSetPowerMode
command with the Power Source Inhibited flag set.

3.2.25. sSetPwrSource
short _ far _ pascal sSetPwrSource (InSpector_T * pst, SHORT s)

This command performs only the power source setting of the sSetPowerMode command. It calls the sSetPowerMode
command with the Power Mode Inhibited flag set. :

3.2.26. sSetStandbyDelay
short __far __pascal sSetStandbyDelay (InSpector_T * pst, SHORT s)

This command performs only the delay setting of the sSetPowerMode command. it calls the sSetPowerMode command with
the Power Mode and Power Source Inhibited flags set.

20

Interface User’s Manuat

3.3. Other Supported Commands

3.3.1. sAckHVStatus Command

3.3.2

short _ far __pascal sAckHVStatus (InSpector T * pst)

Resets the High Voltage Power Supply and updates the associated FAULTANHIBITED status indications from the
MCASTATUS response. Also clears the last power-supply error code.

pst - Pointer to an InSpector against which to apply the command.

Refer to sGetHVStatus and MCASTATUS response to indicate which bits are affected by this command.

sAckMCAStatus Command
short __far __pascal sAckMCAStatus (InSpector_T * pst, SHORT s)

Resets MCA status and alert fiag bits in the MCASTATUS response. These include Preset-Reached, battery-low conditions,
etc.)

pst - Pointer to an InSpector against which to apply the command.
s - Bitmap of which conditions in MCASTATUS to clear.

sResetPresetReached (000 1h) Resets the sPresetReached status flag in the MCASTATUS which indicates that
: the MCA has reached its destined preset tima. Will not clear data or time.

sResetParmlnit (0002h) Resets the sMCAParminit alert flag in the MCASTATUS which indicates that the
MCA board has been re-initialized back to default values.

sResetAcquisitionDelay (0004h) Resets the sAcquisitionDelay status flag in MCASTATUS which indicates that the
start of acquisition has been delayed. This command should not be used to
terminate delayed acquisition. Use sAcquireOff command instead.

sResetRAMBatteryl.ow (0008h) Resets the sRAMBatlow alert flag in MCASTATUS which indicates that the
Lithium battery for the ADC memory is low and the ADC memory is in danger of
fosing data.

sResetStabilizerOver (0010h) Resets the sStabilizerOverrange alert flag in MCASTATUS

sResetPowerlost (0020h) Resets the sPowerlLost alert flag in MCASTATUS which indicates that power to

the ADC/AMP hardware was temporarily interrupted during acquisition.

3.3.3. sAckPSStatus Command

short __far __pascal sAckPSStatus (InSpector_T * pst, SHORT s)

Resets the Power Supply alert flag bits in MCASTATUS and Quad-Enable Fault bit in the sGetPSStatus command

- pst - Pointer to an InSpector against which to apply the command.

s - Bitmap of which conditions in MCASTATUS to clear.

21

3.3.4. sAcquireOn Command

22

InSpector Programming

sResetBatteriesWarning (0100h) Resets the sBatinWarn alert flag in MCASTATUS which indicates that the power
. supply batteries are both in the WARNING region.

sResetPSAlert (0200h) Resets the sLVAlert alert flag in MCASTATUS which indicates that the low
voltage power supply has encountered any of the following conditions:

a) Powaer source switch from battery A to B or 8 to A occurred.

b) Interruption in ac power occurred.

c) Both source batteries are in WARNING region; sBatinWarn alert
flag in MCASTATUS will also be set.

Use sGetPSStatus command to determine the actual cause, present operating
battery, and battery-operating region.

sResetPSCommError (0400h) Reset sPSCommeError alert flag in MCASTATUS) which indicates that an error
occurred during communication with the power supply. Use sGetPSStatus
command to retrieve the last ecror code that may have triggered the alert. Refer
to Appendix C for description of error codes.

The bitmap in s consists of the bitwise OR of the bits described. Bits other than the ones described will have no effect.
Refer to sGetPSStatus to indicate which bits are affected by this command. The Quad-Enable Fault bit in the
sGetPSStatus command will be reset whenever the sAckPSStatus command is issued regardiess of the bitmap.

short __far __pascal sAcquireOn (InSpector_T * pst,
SHORT s,
LONG {Delay,
ULONG ulPresetTime,
ULONG ulLiveTime,
ULONG ulTrueTime)

Reloads the amplifier, ADC, and stabilizer electronics with stored parameters and enables the data acquisition logic.
pst - Pointer to an InSpector against which to apply the command.
s) - Acquisition Preset Control. Used to set the preset mode.

_sSetLiveModo (O1h) - Preset mode is Live Time. If not set, the mode is true time.

The control in 8 consists of the bitwise OR of the bits described. Bits other than the ones described will have
no effect.

{Delay - Delay to start in seconds. O = no delay

ulPresetTime - Preset Time in 0.01 second increments

ulliveTime - Elapsed Live Time in 0.01 second increments

ulTrueTime - Elapsed True Time in 0.01 second increments

if the sAcquireOn command is received while in PwrSave mode, the MCA will automatically switch the power mode to
PwrON, start the acquisition, and return to PwrSave when acquisition terminates. The high voltage will not be automatically
turned ON however unless the high voltage logic has been ARMED. Refer to the sSetHVParms command for description of

the ARMED state. The present state of the ARMED and the Switch-to-PweSave flags can be read back via MCASTATUS.
The Delay-to-start value determines how long to delay the start of acquisition. If the start of acquisition has been delayed,

" Interface User’s Manual

3.3.5.

3.3.6.

3.3.7.

the Acquisition-Delay flag in the MCASTATUS will be set. An appropriate delay value should always be specified when
starting acquisition with the high voltage in the ARMED state to allow for high voltage stabilization. This command will
return an error if issued when acquisition is already on or the start of acquisition has been delayed.

sReadRawSpectralData Command

short __far __pascal sReadRawSpectralData (InSpector T * pst,

SHORT sFirst,
SHORT sLength,
ULONG * pul)

Returns raw spectral data from MCA board in un-compressed form.

pst - Pointer to an InSpector against which to apply the command.
sFirst - Start channel

sLength - Length in channels

pul - pointer to a buffer to place the spectral data

Length must be 1 or greater, and sum of start plus length must not exceed 8192.

sSetAcquisitionDelay Command

short __far __pascal sSetAcquisitionDelay (InSpector_T * pst, LONG IDelay)

Sets the dela_v—to-start acquisition independently of the sAcquireOn or sAcquireStart command.
pst - Pointer to an InSpector against which to apply the command.

{Delay - Delay to start in second. 0000 = no delay

This is actually the same value that is set through the sAcquireOn command. It can be overwritten with a new value at any

time with the sAcquireOn command. The present delay value can be read back through the sReadMCAParms command.

sSetADCParms Command
short __far __pascal sSetADCParms (InSpector_T ¢ pst)

Sets up ADC parameters on the MCA board.

pst - Pointer to an InSpector against which to apply the command. Parameter data must be placed into the stADC

structure. The fields that need to be set are:
enGainRange - Can be:

enGain256 (00)
enGain512 (01)
enGain1k 02)
enGain2k (03)
enGaindk (04)
enGain8k (0S)

23

3.3.8.

24

InSpector Programming

LD - LLD, value can be between 0.1 and 110.0
tULD ' - ULD, value can be between 0.0 and 110.0
tZero - ZERO, value can be between -5.0 and 5.0
eninput - input source. Value can be:

enlntinputSource (01)
enExtinputSource (02)
enTestinputSource (03)
The ZERO DAC value specified in tZero will be modified within the MCA board according to the Zero Correction Table value
for the specified Conversion Gain. This table has been preset on the hardware.
sSetAMPParms Command
short __far __pascal sSetAMPParms (InSpector_T * pst)

Sets up amplifier parameters on the MCA board.

pst - Pointer to an InSpector against which to apply the command. Parameter data must be placed into the stAMP
structure. The fields that need to be specified are:

s - Bitmap that includes the flags:
sFastShaping (04h) - Shaping is Fast. If not set, shaping is slow.
sNeglnhibitSignal (O8h) - INHIBIT signal polarity is negative. If not set, signal
polarity is positive

sPUROn (10h}) - PUR is on. If not set, PUR is off.

sNegSignalPolarity (40h) - Negative signal polarity. If not set, polarity is
positive.

sTRPPreamp (80h) - TRP Preamp type. If not set, it is an RC preamp
type.

The bitmap in s consists of the bitwise OR of the bits described.

enCoarseGain - Coarse gain. The value can be:
enX2 (20h) - Gain of 2
enX6_6 (22h) - Gain of 6.6
. enX10 (O0h) - Gain of 10
enX33 (02h) - Gain of 33
enX120 (Ot1h) - Gain of 120
enX400 (03h) - Gain of 400
rFineGain - Fine gain, value can be between 1.0 and 4.0
rSuperFineGain - Super Fine gain, value can be between 0.9800 and 1.0200
sPoleZero - Pole/zero Setting

Interface User’s Manual

3.3.9. sSetHVParms Command

short __far __pascal sSetHVParms (InSpector_T * pst)
Sets HV voltage setting, polarity, range, and status on MCA board.

pst - Pointer to an InSpector against which to apply the command. Parameter data must be placed into the stHV
structure. The fields that need to be specified are:

s - HVPS Status - bits encoded as foliows:

s0n (O1h) - HV ON/OFF status
: 0= OFF
1= ON
Valid only if sinhibitChange is not set.

sHighRange (04h) - HV Range
O=low
1 =high

sinhibitChange (80h) - Inhibit change to high voltage state (ignore sOn)
The bitmap in s consists of the bitwise OR of the bits described.
4 - Actuat high voltage setting, including polarity

This value will be retained by the MCA board and returned to the host as long as the high voltage is OFF.
When the high voltage is turned ON then the actual value read from the HVPS will be returned instead.

High voltage cannot be turned on if present power mode is not PwrOn. If this command is issued while in PwrSave mode
the high voltage logic on the MCA board will be placed in the ARMED state. White in the ARMED state the high voltage will
be automatically turned ON when an sAcquireOn command is received and automatically turned OFF when the acquisition
terminates. The sAcquireOn command switches the power mode to ON to start acquisition and back to SAVE when done.
The ARMED condition will be reset if the power mode is explicitly set to PwrOn before issuing the sAcquireOn command.
With the high voltage in the ARMED state, an appropriate delay value should be specified when issuing the sAcquireOn
command to force a wait before actually starting acquisition to allow for high voltage stabilization. Change of polarity and
range will not be allowed if high voltage is already on. .

3.3.10. sSetStabilizerParms Command
short _ far __pascal sSetStabilizerParms (inSpector_T ¢ pst)
Sets up stabilizer parameters on the MCA board.

pst - Pointer to an InSpector against which to apply the command. Parameter data must be placed into the stStab
structure. The fields that need to be specified are:

stGain and stZero - Fields of each control structure are specified. The fields specified are:

sCentroid - Centroid location
sWindow - Width of window
sSpacing - Spacing of centroid
sCarrection - Correction

25

InSpector Programming

enControl - The control values can be:

enControlHold (00)
enControlOn (01)
enControlOff (02)
enControlLoad (03)

sRateDiv - Rate Divider, value canbe 1, 2, 4, or 8
s - Stabilizer Control, bits encoded as follows:
sNalRange (O1h) - Stabilizer Gain Range

0 = % 1% (for Ge detectors)
1 = £ 10% (for Nal detectors)

Zero and Gain Correction values will not be written to the hardware if the present stabilizer mode is ON.

3.4. Data Structures

3.4.1. ADC
typedef struct ADC_S { GainRange_T enGainRange; /* Gain Range */
REAL rLLD; /* LLD ¢/
REAL fULD; /* ULD ¢/
REAL tZero; I* Zero */
Input T enlnput; 1* ADC Input Source */
} ADC_T;
3.4.2. Amplifier
typedef struct AMP_S { SHORT s; " /* Parameters in bO */
CoarseGain_T enCoarseGain; /* Coarse Gain */
REAL rFineGain; /* Fine Gain */
REAL rSuperFineGain; /* Super Fine Gain */
SHORT sPoleZero; /* Power Zero setting */

REAL rShapeConst; 1* Shaping Time Constant */
} AMP_T; :

3.4.3. Battery

typedef struct Battery_s { OpRegion_T enOpRegion; /* Operating region */
- REAL rVoltage; I* Voltage */

} Battery _T;

3.4.4. Baud Rate -

typedef enum Baud_E { 81'200, 89600, B19200, B38400, BS7600,8115200 } Baud_T;
=0x60, =0x0C, =6, =3, =2, =1

3.4.5. Coarse Gain

typedef enum CoarseGain_E { enX2, enX6.6, enX10, enX33, enX120,enX400 } CoarseGain_T;
=0x20, =0x22, =0x0, =0x2, =0x1, =0x3

26

interface User’s Manual

3.4.6. COMM Port

typedef enum CommPort_E { enCOM1,enCOM2 } CommPort_T;
=0x400, =0x402

3.4.7. Control Mode

typedef enum ControlMode_E { enControlHold =0, enControlOn =1, enControlOff =2, enControlLoad =3

} ControlMode_T;

3.4.8. Cdntrol Siructure

typedef struct Control_S { SHORT sCentroid;
SHORT sSpacing;
SHORT sCorrect
ControlMode T enControl;
SHORT sRateDiv;
SHORT sWindow;
SHORT $;

} Control_T;

3.4.9. Display Data

typedef struct DspData_T { SHORT sSparel;
SHORT s;
SHORT sV;
SHORT slength;
SHORT sRawData;
SHORT sSpare 2;
SHORT sFill{2];

} DspData_T;
3.4.10. Gain Range

typedef enum GainRange_E
} GainRange _T;

3.4.11. Hardware Information

typedef struct Hardwarelnfo_S { LONG {Version;
LONG IModet;
ULONG ulSerialNum;

} Hardwarelnfo_T;

3.4.12. High Voltage Power Supply

typedef struct HV_S { - SHORT
REAL

JHV_T;
3.4.13. Initialization Level

typedef enum InitLeve!_E
} InitLevel_T;

/* Centroid */

/* Spacing */

/* Correction */

1* Control Mode */
/* Rate Division */
1* Window ¢/

/¢ Overrange bit */

/* Spare */

1* Linear or Logarithmic scale */

1* Vertical full scale - value is 2’s exponent */
1* Length of raw data */

/* Raw data for display */

I* Spare */

{* Filler bytes */

{ enGain256 =0, enGainS72 =1, enGainlk =2, enGain2k =3, enGaindk =4, enGain8k =5

/* Firmware Version */
/* Power Supply Model */
/* Power Supply Serial Number */

/* HVPS Status */
1* Voltage */

{ enlnitProgRAM =0, enlnitAllRAM =1

27

InSpector Programming

3.4.14. Input Source

typedef enum Input_E { enintinputSource =1, enExtinputSource =2, enTestinputSource=3
} Input_T;

3.4.15. InSpector

typedef struct InSpector_S { CommPort T enCommPort; /* COMM Port */
ADCT . stADC; 1* ADC Information */
AMP_T stAMP; {* AMP Information */
HV_T stHV; /* HV Information ¢/
Stabilizer_ T stStabilizer; {* Stabilizer Information */
= } InSpector_T;)

3.4.16. MCA Parameters

typedef struct MCAParms_S { SHORT s; . /* Acquisition Preset Control */
LONG {Delay; 1* Delay to start in seconds */
ULONG ulPresetTime; /* Preset Time */
ULONG ulliveTime; /* Elapsed Live Time */
ULONG ulTrueTime; {* Elapsed True Time */

} MCAParms_T;

3.4.17. MCA Status

typedef struct MCAStatus_T { SHORT sStatus; /* MCA Status */
" SHORT sAlerts; I* Alert flags */
SHORT sStates; [* States flag */
SHORT sDiagStatus; /* Diagnostic Status */

} MCAStatus_T;
" 3.4.18. Operating Region

typedef enum OpRegion_E { enDischarged =0, enStandby =1, enBatterylow =2, enBatteryGood =3
} OpRegion_T;

3.4.19. Power Mode

typedef enum PowerMode_E { enPwrOFF =0, enPwrSTDBY =1, enPWrSAVE=2, enPwrON=3
} PowerMode_T;

3.4.20. Power Supply

typedef struct PS_S { SHORT sSysStatus; {* Power Supply System Status */
. PowerMode_T enMode; /* Power Mode of operation */
SHORT sPSStatus; /* Power Status */
Battery_T stBatA; {* Battery A information */
Battery T stBatB; /* Battery B information */
SHORT sErrCode; /* Last Power Supply Error code */
SHORT sDelay; /* Standby delay in minutes */
}PS_T;

3.4.21. Stabilizer

typedef struct Stabilizer_S { Control_T stGain; /* Gain structure */
Control_T stZero; I* Zero structure */

28

Interface User’'s Manual

SHORT s; [* Stabilizer Control bit

} Stabilizer_T;

3.5. User Interface Example of Acquiring Data
#include <dosinsp.h>

InSpector_T MyinSpector;
MCAStatus_T MyMCAStatus;
int rc;

ULONG MyData{4000};

/* Set communication port */
MylnSpector.enCommPort =enCOM1;

1* Synch up with InSpector®/
sBaudSynch{&MylnSpector,B19200);

/* Set analog-to-digital converter parameters */

MyinSpector.stADC.enGainRange =enGain2k;
MyinSpector.stADC.iLLD =1.01;
MylnSpector.stADC.fULD =99.99;
MyinSpector.stADC.rZero =0.001;
MyinSpector.stADC.eninput =enlntinputSource;

I* Set amplifier parameters */

MylinSpector.stAMP.enCoarseGain=enX10;
MyinSpector.stAMP.rFineGain = 1.56;
MylnSpector.stAMP.rSuperFineGain =1.00984;
MylnSpector.stAMP.sPoleZero = 1000;
MytnSpector.stAMP.s =sPUROn | sFastShaping;

/* Set high voltage */

MyinSpector.stHV.s =sHighRange;
MyinSpector.stHV.r =-1300;

[* Set stabilizer gain parameters */

MylnSpector.stStabilizer.stGain.sCentroid = 200;
fMylnSpector.stStabilizer.stGain.sWindow =5;
MylnSpector.stStabilizer.stGain.sSpacing =4;
MyinSpector.stStabilizer.stGain.enControl =enControlOn;
MylnSpector.stStabilizer.stGain.sRateDiv=1;
MylnSpector.stStabilizer.stGain.sCorrect =0;

/* Set stabilizer zero parameters */

MyinSpector.stStabilizer.stZero.sCentroid = 100;
MylnSpector.stStabilizer.stZero.sWindow =5;
MylnSpector.stStabilizer.stZero.sSpacing = 4;
MylinSpector.stStabilizer.stZera.enControl =enControlHold;

¢l

29

inSpector Programming

MylinSpector.stStabilizer.stZero.sbcRateDiv=1;
MylnSpector.stStabilizer.stZero.sCorrect =0;

1* Start Acquisition */
rc =sAcquireStart{ &MylnSpector, sSetlLiveMode, 60, 600, 0, 0);
/* Wait for preset condition to be reached ¢/
if (rc==0) {
do {
rc =sReadMCAStatus{ &MyinSpector, &MyMCAStatus);
} while ((rc = =0) && (MyMCAStatus.sStatus & sPresetReached));

/* Read Spectrum Data */

if (rc==0) {
rc =sReadSpectrumData(&MylnSpector, 1, 4000, MyData);
if (rel=0) {
Perform error routine
}
} else {
’ Perform error routine
} else {
Perform error routine
} ;

4. CALLING INSPECTOR API C FUNCTIONS
This section deals with calling the InSpector APi C functions from BASIC and from C itself.

The method for calling C functions from another language described in this document was chosen primarily for its clarity and
should not be taken as being the only method available to the programmer.

There are several major differences between BASIC and C which often prevent direct calling between the two languages.

a. The order in which parameters are pushed on the stack. BASIC parameters are pushed on the stack in the order in
which they appear, whereas C parameters are normally pushed in reverse order to allow for varying number of
arguments. Howaever, the functions for the InSpector APl use the BASIC calling convention. This convention is noted by
using the _ pascal keyword before the function prototypes in the description of the commands.

b. Formal arguments to subprograms in C are ordinarily passed by value, whereas in BASIC they are passed by reference.

c. By default, the C compiler inserts an underscore character (_) at the beginning of each name in the C module, whereas
the BASIC compiler does nat.

4.1. Calling Microsoft C Functions From BASIC

BASIC provides the DECLARE statement which provides the necessary interfacing for the calling of C functions and subroutines.
The DECLARE statement tells the program that the subroutine or function is defined in an external file. It also defines the formal
argument types of the function.

30

Interface User’s Manual

The CDECL attribute is not necessary for using the InSpector APl’s C functions because the C functions were compiled using the
Pascal calling convention. BASIC uses this convention. :

In addition, the functions VARPTR and VARSEG provided by BASIC allow for proper passing of array pointers to the C
subprograms.

C requires that most of the parameters for its subroutines and functions are p d by value. True value passing is achieved in
BASIC by applying BYVAL to the parameters in the DECLARE statement when declaring the external C subprograms.

When a C function requires a reference to a variable, a pointer variable is required. All pointers used in the InSpector AP!
interface are far pointers. A far pointer to a variable is achieved in BASIC by applying SEG to the parameter in the DECLARE
statement when declaring the external C subprogram.
Syntax for the interface declaration to call an inSpector APl function which requires a referance and a value is as follows:
DECLARE FUNCTION fnname [LIB “WININSP”] (SEG arg1 as type, BYVAL arg2 as INTEGER, etc.)
where:
faname name and type of function to be called from Visual BASIC for DOS

argl..n formal arguments, including type

fnname includes both the name and type of function. Types are specified in BASIC by appending a type-declaration suffix to the
name. Type-declaration suffixes are as follows: ’

% 16-bits integer or short
& 32-bits long
{ -32-bits single precision floating point

64-bits double precision floating point

L3

variable strings
The LIB keyword and its value “WININSP” are required only when using the Windows DLL.
For example:

DECLARE FUNCTION sBaudSynch%

(SEG pst as InSpector_T, BYVAL en as INTEGER)

Note that the C function ‘sBaudSynch’ has been declared as returning a 16-bit quantity. The function requires two arguments, a
pointer to an InSpector structure and the baud rate which is passed by value.

The BASIC functions VARPTR and VARSEG are used in the main program to produce offsets and segments, respectively, for
arrays of values. When passing a pointer to an array in the InSpector APl, the segment of the array is placed in the parameter list
before the offset. The offset and segment are passed by value as integers.

‘All functions in the InSpector API return 16-bit quantities.

There are a few uses in the InSpector API of unsigned long integers. Since BASIC doses not support unsigned integers, a signed

long integer can be substituted. The memory contents remain unchanged when using a signed instead of an unsignéed integer.
However, the BASIC programmer must account for the differences in interpretation of signed and unsigned integers.

31

InSpector Programmfng

4.1.1. Compiling Programs Written in BASIC

Requirement for DOS:
Microsoft Visual BASIC for DOS, V1.0

Using the Microsoft Visual BASIC for DOS Compiler, a BASIC program named DEMOBAS.BAS can be compiled as follows:

bc DEMOBAS.BAS /0;

where:
bec is the command to invoke the Visual BASIC for DOS Compiler
10 creates object (.0BJ) file only

DEMOBAS.BAS is the Visual BASIC fbr DOS program being compiled

The compiliation for BASIC Windows programs is similar.

4.1.2. Linking Programs Written in Visual BASIC for DOS
The linker must be the Microsoft Segmented Executable Linker V5.30, or later.
The syntax for linking DEMOBAS.BAS demonstration program is:

link /NOE /NOD DEMOBAS,, basic.lib DOSINSP.LIB CRTINSP.LIB

where:
link s the command to invoke the linker
/NOE, /NOD are required
DEMOBAS is the Visual BASIC for DOS demonstration program.
‘basic.lib * is a BASIC run-time library. Replace ‘basic.lib’ with the name of the appropriate library.

DOSINSP.LIB is the InSpector API static library
CRTINSP.LIB is the library containing needed C run-time routines.

Note that the order of the libraries is important.

4.1.3. Linking Programs Written in Visual BASIC for Windows

The syntax for linking a BASIC Windows program is:
link basprog,,basic.lib WININSP.LIB, basprog.def

where:
link is the command to invoke the linker

‘basprog’ is the BASIC Windows object file
‘basic.lib’ is the BASIC runtime library. Replace ‘basic.lib’ with the name of the appropriate library

WININSP.LIB is the InSpector APl import library

32

Interface User’'s Manual

‘basprog.def’ is a user-supplied module definition file

Note that to run the BASIC program, the file WININSP.DLL must be in a directory supplied in the PATH variable or must be in the
current directory.

4.2. Calling C Functions From C

4.2.1. Compiling Microsoft C Functions for DOS

Requirements:
Microsoft C/C+ + V7.0 or Visual C V1.0 or V1.5,

A C module can be compiled as follows:

¢l -c -Ze -Alfu DEMOC.C

where:
el is the command to invoke Microsoft C Compiler
-c no link step desired
-Ze enables language extension keywords (FAR, etc.)
-Alfu is the program configuration

| = large code pointer
f = Far data pointer

u = SS not equal to DS; DS loaded for each madule

DEMOC.C is the C module being compiled

Note that the selected Program configuration must be the same for all modules.

4.2.2. Linking Microsoft C Programs for DOS

Requirement:
Microsoft Sggmented Executable Linker V5.30, or later.

The syntax for linking the DEMOC.C program is:

link /NOE DEMOC,, ,DOSINSP.LIB;

where:
link is the command to invoke the linker
DEMOC is the Microsoft C program
INOE . is required

DOSINSP.LIB is the InSpector AP static library.

33

InSpector Programming

4.2.3. Compiling C Functions for Windows

A C module for Windows can be compiled as follows:
cl -c -Ze -GA -Gs cprog.c

where:
ol is the command to invoke the compiler
-c no link step desired
-Ze enable§ language extension keywords (FAR, etc.)
-Ga optimizes Entry/Exit code for Protected Mode Windows
-Gs tu;ns off stack checking

‘cprog.c’ is the C module being compiled

4.2.4. Linking C Programs for Windows

The syntax for linking a C Windows program is:
link /NOD:SLIBCE cprog,. WININSP.LIB LIBW.LIB SLIBCEW, cprog.def

where:
link is the command which invokes the linker

/NOD:SLIBCE excludes SLIBCE from the default library search. Replace SLIBCE with another library named if the default
small library was not used in compiling the object file

‘cprog’ is the C Windows object file

WININSP.LIB is the InSpector APl import library

SLIBCEW is the small model application library for Windows; it may be replaced with another model library = -
usw.LiB is import information for Windows DLLs

‘cprog.def’ is a user-supplied module definition file

Note that to run the program, the file WININSP.DLL must be in a directory supplied in the PATH variable or must be in the
current directory.

A. COMMUNICATION

A.1. Serial Communication Parameters

Data will be transmitted via RS-232 as follows:

Baud rate: | 1200, 9600, 19200, 38400, 57600, or 115200 bps
Parity: Even

Word Length: 8 data bits

Stop bits: 1

Actual data rate will be dictated by the host. The MCA will adjust itself to match the rate of the host computer.

-

34

" Interface User’s Manual

B. APl ERROR CODES

B.1. MCA Error Codes

These error codes are a subset of the InSpector MCA error codes. These codes will be returned to the application program. MCA

error codes that are not on this list should not be encountered during normal execution of the inSpector API. If they occur, the
AP1 returns an application error code of F1. Possible error conditions returned to the application are:

sinvalidArgument
slnvalidLength

sAcquisitionOnError

sAcquisitionOffError
sPowerNotOn
sWriteError
sinvalidNumChars
sAcquisitionNotOn
. sDACVerifyError
sHVNotOff
sPowerModeNotOn

sGenSysError

B.2. Other Error Codes

sRCLineError
sCOMMPortCoanic-t
sMaxTimeReached
sAllDataNotReceived

sTransmitTimeOut

-FC

FA

F9

F8

F7

F6

FS

F4

F3

EB

EA

F2

F1

FO

E9

E7

E8

Invalid argument(s) received
Invalid length specified in the command

(a) Cannot load spectral data with acquisition on
(b) Attempting to start acquisition with acquisition already on

Attempting to turn off acquisition with acquisition already off
Power must be ON to honor this command

Write error detected during write to EEPROM

fnvalid number of characters in command

Acquisition must be ON to honor this comman&

Write/Read verify-error while writing to hardware DACs

High voltage must be OFF to honor command

Power mode must be ON to turn high voltage ON

General System Error (usually unrecoverable)

Communication line error

Communication with another InSpector in progress
Maximum Time Reached for Command

All Data not Received

Transmit Time Out

C. POWER SUPPLY ERROR CODES

These are ercor codes reported by the sGetPSStatus command. In most cases these represent a hardware-related problem in the
Synchronous Communication Channel to the power supply.

01 Character timeout.

02 Unable to buffer SPt command(s)

35

03

04

0S

06

07

o8

09

OA

10

11

12

13

14

15

16

17

FC

FD

FE

FF

invalid RY character received after having sent SC
Unrecoverable Synch. Comm. Channel system error.
Invalid SC character

System error. SPIF flag not set at end of SP! transfer
SPl communication buffer full and pacing timer is OFF
Mode or Write-collision error

invalid RY character during wait

Timeout while a SP{ transfer wa; in p;ogfcss
Not-ready when attempting to transmit -

Not-ready when attempting to receive

Unable to communicate over SP{ channel

Mismatch in received data after having sent BO

Mismatch in received data after having sent B1

Mismatch in received data after having sent EC
Mismatch in feceivéd data during receive of SR
Mismatch in received data during receive of ER
Receiver collision or noise error in the power supply
Invalid EC code received by the power supply
Invalid CC code received by the power supply

Invalid SC code received by the power supply

D. PROGRAM CONTENTS

36

DOSINSP.BAS

DEMO.BAS

DOSINSP.H C function prototypes and constant definitions.

.CITYPES.H Type definitions used in DOSINSP.H.

DOSINSP.LIB Static library of all functions used in the application interface.
CRTINSP.LIB

DEMOC.C An example use of the interface written in C.

Similar in content to DOSINSP.H but for use with BASIC for DOS.

An example use of the interface written in BASIC for DOS.

InSpector Programming

Static library of C run-time routines used by the application interface and not provided by BASIC compilers.

Interface User’s Manual

WININSP.DLL Windows 3.1 dynamic link library (DLL) of all functions used in the application interface.
WININSP.LIB An import library of the DLL functions in the application interface.

WININSP.BAS Similar in content to DOSINSP.H but for use with BASIC for Windows.

37

VN canserpa

WARRANTY

This warranty covers Canberra hardware and

- software shipped to customers within the United
States. For hardware and software shipped outside
the United States, a similar warranty is provided by
Canberra’s local representative.

DOMESTIC WARRANTY
Equipment manufactured by Canberra's Instru-
ments Division, Detector Products Division, and
Nuclear Systems Division is warranted against
defects in materials and workmanship for one year
from the date of shipment.

Canberra warrants proper operation of its software
only when used with software and hardware sup-
plied by Canberra and warrants software media to
be free from defects for 90 days from the date of
shipment.

If defects are discovered within 30 days of the time
you receive your order, Canberra will pay transpor-

tation costs both ways. After the first 30 days, you

will have to pay the transportation costs.

This is the only warranty provided by Canberra;
there are no other warranties, expressed orimplied.
All warranties of merchantability and fitness for an
intended purpose are excluded. Canberra shall
have no liability for any special, indirect or conse-
quential damages caused by failure of any equip-
ment manufactured by Canberra.

EXCLUSIONS

This warranty does not cover equipment which has
been modified without Canberra's written permis-
sion or which has been subjected to unusual physi-
cal or electrical stress as determined by Canberra’s
Service Personnel.

Canberra is under no obligation to provide warranty
service if adjustment or repair is required because
of damage caused by other than ordinary use or if
the equipment is serviced or repaired, or if an at-
tempt is made to service or repair the equipment, by
other than Canberra personnel without the prior
approval of Canberra.

This warranty does not cover detector damage
caused by abuse, neutrons, or heavy charged par-
ticles.

SHIPPING DAMAGE

Examine shipments carefully when you receive
them for evidence of damage caused in transit. if
damage is found, notify Canberra and the carrier
immediately. Keep all packages, materials and
documents, including your freight bill, invoice and

. packing list. Although.Canberra is not responsible

for damage sustained in transit, we will be glad to
help you in processing your claim.

OUT OF WARRANTY REPAIRS

Any Canberra equipment which is no longer
covered by warranty may be returned to Canberra
freight prepaid for repair. After the equipment is
repaired, it will pass through our normal pre-ship-
ment checkout procedure.

RETURNING EQUIPMENT

Before returning equipment for repair you must con-
tact your Regional Service Center or one of our
factories for instructions. For detector repair, con-
tact the Canberra Detector Division in our Meriden,
Connecticut, factory for instructions. if you are going
to return the equipment to the factory, you must call
first to get an Authorized Return Number (ARN).

When you call us, we will be glad to suggest the best
way for you to ship the equipment and will expedite
the shipment in case it is delayed or lost in transit.
Giving you shipping advice does not make us
responsible for the equipment while it is in transit.

SOFTWARE LICENSE

You have purchased the license to use Canberra
software, not the software itself. Since titie to this
software remains with Canberra, you may not sell
or transfer this software. This license allows you to
use this software on only one compatible computer .
at a time. You must get Canberra’s written permis-
sion for any exception to this license.

BACKUP COPIES .
Canberra's software is protected by United States
Copyright Law and by International Copyright
Treaties. You have Canberra's express permission
to make one archival copy of this software for back-
up protection. You may not copy Canberra software
or any part of it for any other purpose.

